Lyman-alpha forest science with BOSS

- Lya working groups
- Lya observations
- Lya mocks
- Lya typical issues : continuum / DLA
- Lya science

Lyman-alpha Forest Cosmology Working Group (mars 2010)

« focus on cosmological science from the Lyman-alpha forest data obtained using BOSS instrument.

complete analyses of **lyman-alpha forest clustering** in Fourier and configuration space, on large (>10Mpc) and small (100kpc - 10Mpc) scales, in 3 dimensions, and along the sightline direction, carrying out all measurements **as a function of redshift**.

the distance-redshift relation from BAO Alcock-Paczynski test matter power spectrum on small scales.

catalogs of spectra and mock spectra necessary for clustering analyses. »

Lyman-alpha IGM science working group

« focused on IGM science.

study the **physical properties** of the intergalactic medium.

- Metal line detection and clustering and metal-lya cross correlations
- quasar-lya clustering and the quasar radiation **proximity** effect.
- The measurement of damped Lya lines and Ly-limit systems

make available to the collaboration samples of metal line systems and related data. »

Lyman-alpha forest in BOSS QSO spectra

comparison with SDSS-II spectra are necessary

Lya observed / mock spectra

- Physics encoded in the Lya forest pixels
- Why is it so difficult to use Lya absorption spectra ?
- Different techniques to do mocks

What is encoded in the Ly α forest

HE 1122-1618 $au\propto~\delta_{\text{Hi}}\propto \text{T}^{0.7}~\delta^2$ / $\Gamma(z)$

Peculiar velocities

Observationnal parameters

1 – Continuum 2 – Resolution

Wavelength (Å)

Observationnal parameters

- 1 Continuum
- 2 Resolution
- 3 Signal to Noise

Wavelength (Å)

Lya Mock catalogs

Density to Flux : Using Gaussian Fields + Fluctuating Gunn-Peterson Approximation

- 3D Density Gaussian Fields + <u>LogNormal?</u> Transformation (3DG+LN)
- Flux Gaussian Fields along correlated lines of sight + <u>LogNormal?</u> Transformation (1FG+LN)

Using Dark Matter Simulations + Fluctuating Gunn-Peterson Approximation

Add continuum...

Open Questions

- How to include small-scale effect ?
- How to account for a correct PDF, bias parameters : linear, scale-independent ?
- Can we improve the low-resolution DM simulations applying some kind of lognormal transformation?

Mock catalogs

• Non-parallel lines of sight, density, noise etc...

Lya pre-analysis

- Continuum
- DLA

continuum

PCA / power law...: Nao Suzuki, KG Lee (Friday), Isabelle Paris (Saturday)

continuum

PCA / power law...: Nao Suzuki, KG Lee (Friday), Isabelle Paris (Saturday)

If DLA show the same correlation as galaxy, could add a signal... where do we place DLAs in Mock ?

Can also modify the 'simple' IGM signal...

Andreu Font's talk (Friday)

DLA

Metal lines associated to low redshift structures....

Add correlation at different comoving length scales (??)

Lya science from 1st year data and mock catalog

- Mean flux
- 1d power spectrum
- 3d power spectrum

C. Yeche, june 2010

1d power spectrum from 1st year data

After subtraction of the noise, fairly good agreement with Pat's P(k) !!!

C. Yeche, June 2010

3d coorelation function from 1st year data

Jim Rich (Friday), A. Slozar, S. Ho...

3d correlation function from 1st year Mock data - effect of DLAs

A. Font : mocks for 2pc catalog

3d power spectrum dependence on continuum with Mock BOSS

Future works

- Add more baryonic small-scale physics
- Add more 'side-effect', metals, DLA
- Continuum...
- Mocks with different surveys
- Play with on-going data !!